SIC 2819 Industrial Inorganic Chemicals, Not Elsewhere Classified

SIC 2819

This category includes establishments primarily involved in manufacturing industrial inorganic chemicals not elsewhere classified. A few examples are alum, ammonium compounds (except for fertilizer), industrial bleaches (sodium or calcium hypochlorite), chemical catalysts, hydrazine, hydrochloric acid, hydrogen peroxide, inorganic sodium compounds, and sulfuric acid.

Establishments primarily engaged in mining, milling or otherwise preparing natural potassium, sodium, or boron compounds (other than common salt) are classified in SIC 1474: Potash, Soda, and Borate Minerals; establishments primarily engaged in manufacturing household bleaches are classified in SIC 2842: Specialty Cleaning, Polishing, and Sanitation Preparations; those manufacturing phosphoric acid are classified in SIC 2874: Phosphatic Fertilizers; and those manufacturing nitric acid, anhydrous ammonia, and other nitrogenous fertilizer materials are classified in SIC 2873: Nitrogenous Fertilizers.

NAICS CODE(S)

325998

All Other Miscellaneous Chemical Product Manufacturing

331311

Alumina Refining

325131

Inorganic Dye and Pigment Manufacturing

325188

All Other Inorganic Chemical Manufacturing

INDUSTRY SNAPSHOT

The inorganic chemicals industry makes up the bulk of basic chemical production. Inorganic chemicals are those derived from inanimate earth materials such as minerals and the atmosphere. They are differentiated from organic chemicals, which are derived from plant and animal sources. Organic chemicals are based on carbon; inorganic chemicals are based on all other naturally occurring and synthetically produced elements.

The major chemicals within this classification are known as "basic" chemicals. They are also sometimes referred to as "heavy," "bulk," or "commodity" chemicals. Manufacturers typically produce them from ores or brines, or as co-products or by-products of other processes. They serve industrial users who put them to work in the creation of other products. Some common applications include processing aids and chemical catalysts. Inorganic chemicals are also used as ingredients in non-chemical products. The primary markets for chemical products are paper, housing, automobiles, water treatment, fertilizer, petroleum refining, steel production, manufacturing, and soap and detergent production.

Sulfuric acid is by far the largest volume inorganic chemical. It is used primarily as a chemical reagent in a variety of industrial processes with the largest end use in fertilizer production. About three-fourths of domestic sulfuric acid is used for phosphate fertilizer.

Hydrogen peroxide is a rapidly growing sector of the inorganic chemicals industry. Pulp and paper manufacturing account for more than half the demand for hydrogen peroxide as it becomes a more viable option than chlorine for the chemical bleaching of paper. It is also used to remove ink from paper before the recycling process. Other uses for hydrogen peroxide are in water and waste treatment and for bleaching textiles.

ORGANIZATION AND STRUCTURE

Chemical producing companies range in size from small establishments providing a single chemical to multi-national corporations offering thousands of different chemical products. The Chemical Manufacturers Association (CMA) was established to represent the industry's interests in local, state, and national affairs. According to the CMA, the industry's challenge was to balance self-interests with those of its many publics—legislators, regulators, the courts, and, especially, employees and neighbors.

Historically, regulators proved a large and demanding public. Several governmental agencies existed to regulate specific facets of the industry. For example, regulations covering railroad shipments of hazardous materials were instituted following the Civil War; and during the closing years of the 1800s, the Bureau of Chemistry (within the U.S. Department of Agriculture) was responsible for overseeing the safety of chemicals used in foods and drugs.

Governmental efforts to ensure product safety, establish worker safety laws, and protect the environment intensified during the 1970s, beginning with the establishment of the Environmental Protection Agency (EPA) in 1970. The decade brought the following host of new regulations: revisions of the Clean Air Act (1970 and subsequent amendments), the Occupational Safety and Health Act (1970), the Resource Recovery Act (1970), the Federal Water Pollution Control Act (1972), the Safe Drinking Water Act (1974), amendments to the Federal Insecticide, Fungicide, and Rodenticide Act (1972), the Resource Conservation and Recovery Act (1976), and the Toxic Substances Control Act (1976). The 1980s opened with the passage of the Comprehensive Environmental Response, Compensation, and Liability Act (also known as the "Superfund" Act).

Federal regulations mandated that new chemicals be evaluated for safety before use, that new uses of existing chemicals be evaluated, and that all chemicals meet specific safety and health standards. In addition, governmental bodies regulated by-products and co-products, controlled transportation, and monitored waste disposal. In her 1984 work Toxic Substances Controls Primer Mary Devine Worobec noted that "Virtually every chemical and substance used in the United States is subject to some type of control. During manufacture, workers who are exposed must be monitored. During use, by-products are created that must be treated in specified ways and when use of a substance is completed, the wastes that remain must be disposed of in approved ways. And at each juncture, the chemical must be transported to the site of the next stage in a proper manner."

BACKGROUND AND DEVELOPMENT

The first attempt to identify the "elements," basic indivisible materials, resulted in a list of four substances: earth, air, water, and fire. The ancient Greeks identified nine modernly recognizable elements: gold, silver, mercury, copper, lead, tin, iron, sulfur, and carbon. As elements and compounds were identified and understood, they were put to work. Early uses for chemicals included dyeing, bleaching, tanning, brewing, embalming, baking, mining, and cleaning. Chemicals were also important to the development of art and medicine.

One of the first products of the chemical industry was borax. A naturally occurring compound containing sodium, boron, and oxygen, borax was known to the Babylonians and Egyptians. Marco Polo inaugurated trade in borax between the Far East and Europe. Another early product (still traded in modern times) was alum. Alum was used during the fifteenth century to stop bleeding, and served as an additive to dyes to improve their ability to adhere to fabrics.

The modern inorganic chemicals industry has its roots in the discovery of the elements. The first element discovered since the time of the ancient Greeks was phosphorous. A German alchemist, Henning Brand, discovered it in 1669 during his attempts to make gold. Modern applications of phosphorous include matches (invented in 1831) and tracer bullets.

During the 1700s, a Dutch chemist decomposed borax to make boric acid. French chemists further decomposed the boric acid and discovered the element boron. Uses of boron compounds in the twentieth century have included water softeners, cleansers, fiberglass, gasoline additives...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT