Technologies That Are Elevating The Great Outdoors: Using technology to master the forces of nature.

AuthorAndra, Jacob

Humans, even our most primitive forebears, have always used technology to master the forces of nature and make ourselves more secure and comfortable in the outdoors. While modern technologies offer properties far beyond the stone, hide, and wood that 10,000 BC humans had to work with, the difference is one of scope, not kind.

Make no mistake: knapped flint was a human-invented technology as surely as a carbon-fiber hiking pole; sewed mammoth hides as much as a heated down jacket. The difference is that we've gotten much more sophisticated in our creations.

Manufacturers of outdoor products have always been at the cutting edge of materials science and engineering. Today, companies make products that are warmer, lighter, stronger, and otherwise... better. An intricate linkage ties product improvement to revenue to folks getting outside more: a virtuous cycle that feeds the economy and gives adventurers an enhanced experience.

Composites that create the strongest gear

Composites utilize two or more separate materials to create a new material with "best of both worlds" properties. Back in the day, fiberglass was the latest and greatest, offering a replacement to wood across almost every product category imaginable. Made of blown molten glass cooled into fibers and bonded with plastic resin, it provided a prototype for today's composite materials.

Composite materials have been around for more than two millennia, used for outdoor, and especially military purposes. The composite bow, for one, gained notoriety in the hands of Mongolian archers under Genghis Khan. Composite bows featured a wood core reinforced with horn, sinew, and other animal products. Composite bows packed greater draw strength into a smaller package than their solid-wood counterparts allowing mounted archers to shoot high-velocity arrows from a relatively small bow.

Modern composites bind carbon fibers--or a blend of carbon and glass fibers--into resins to achieve a variety of performance goals. By varying fiber types, fiber blends, and resin types, manufacturers can optimize for weight, flexibility, strength, or a balance of all three. Salt Lake City-based Cataract Oars, for instance, "began manufacturing oars in 1985 for western river guides," says Dylan Holt, the company's product manager and an avid rafter himself.

Since entering the market all those years ago, Cataract Oars' paddles and oars have been the gold standard in their category. Parent company, Advanced Composites...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT