Author:Mohamad, Imanurezeki


Recent world development on industrial-technology economy contributes substantial significant increase in energy consumption. Hence, other factors such as rapid urbanisation and population also become a major factor driving growth for global electrical energy consumption. Aside from rising issues of energy consumption, the environmental concerns on energy usage and the frequent increase of energy consumption costs has become an important and challenging issue in many countries. In this regard, buildings contribute significantly to the overall energy consumption. Current research revealed that energy consumption of buildings account for approximately 40% of the total electrical energy consumption (Gruber et al., 2015). Quantitative studies on building energy consumption showed that projected energy consumption will continually increase for the period of 2010 to 2040 (Li et al., 2018).

The present research raises another contribution to address building energy management issues related with energy efficiency, minimize total building energy consumption and optimised building system with lowest energy consumption. Typically, Building Energy Management (BEM) involved monitoring and controls the energy consumption in buildings. According to Gruber et al. (2015) the implementation of BEM during building operation time is important to reduce energy consumption and improve energy efficiency. They also stated that by understanding building energy consumption patterns and prediction of BEM creates an opportunity to resolve other issues related building energy consumption issues such as security of supply, environmental and economic. Throughout the BEM strategies, such practices like energy refurbishment and retrofitting have largely become a standard practice due to basic energy and economic efficiency in order to reduce energy dependency and greenhouse gas emissions. The building energy refurbishment and retrofitting are important factors for reducing energy and emissions but do not reward or promote efforts to improve other process improvements (Khairi et al., 2017).

In addition, BEM is an important issue related to operation of Heating Ventilating and Air Conditioning (HVAC) systems due to the growing energy costs and environmental concerns. In building sector, HVAC systems is predicted as the largest energy consumption in building which represent 45% from total building energy consumed. The effective of HVAC system Operation and Maintenance (O&M) procedure involved systematic task and requirements for occupants comfort, HVAC components reliability, efficient HVAC system operation, energy and cost saving potentials. Bory et al. (2007) found that adaptation of HVAC system O&M procedure can enhance operating efficiency of overall HVAC system and can reduce 5 to 20 % of the capital investment and O&M costs.

With this realization, this study conducted on one medium size of university office building with the centralized HVAC system. This scope of study is limited to one study area in order to develop a conceptual framework for evaluating O&M cost from collecting the building specific information, gather information of the centralized HVAC system and evaluate O&M cost within the system. This study primarily addressed the issues related to building energy management with respect to identify a potential of primary cost savings under the O&M cost of centralised HVAC system for Administration office building at Universiti Teknologi Malaysia (UTM). This building were specifically chosen for the important reason that this building will provide the best option for pioneering the implementation of HVAC systems management for university that currently exist. On the other hand, this case study was particularly selected to provide a benchmark for centralised HVAC system performance measurements as representatives under real-working conditions and evaluate the potential energy savings. The results of this study will provide important insights of the O&M cost management of the centralized HVAC system impacts and in assisting forward strategies opportunities to manage HVAC system facilities of other university office buildings with similar specification.


Several studies have accentuated that the exponential increase of building energy consumption reflected on changes in building energy management in terms of energy saving, cost reduction, system efficiency operation and sustainable building management (Soares et al., 2017; Min et al., 2016; Shoubi et al., 2015). Buildings energy consumption is expected to frequent changes in the way how they are used, maintained and refurbished that may affect their energy consumption and supply costs (Gruber et al., 2015).In addition, energy consumption for building cooling system accounts for 57% from total energy consumed in buildings (Rismanchi et al., 2012). Specifically, some studies in Malaysia showed that the average rate of building cooling energy consumption increased by 1.4 % per year (Kubota et al., 2011). The extent of this cooling energy consumption is 60% outpaced from total building energy consumption in Malaysia (Chong et al., 2015; Saidur et al., 2009). This factor, in turns highlighted the key strategy for managing building cooling energy system and addresses the opportunities for energy saving consumptions and cost.

At present, the lack of comprehensive university building energy consumption and the encountered problem have been identified due to the insufficient budget and lack experienced of energy management team. Thus, it is recommended for a series of building energy management is to ensure in direction with a target for university energy-cost saving, hence, enhancement procedure to prevent energy wastage by providing the means to reduce university energy consumption. Building energy consumption management is considered one of the most important aspects that should be conducted in parallel with sustainability university campus. Within this context, the implementation of building energy evaluation will enhance knowledge and awareness for energy and non-energy benefits.


To continue reading