Reactor Road: A nuclear energy hotbed on the Richardson Highway.

AuthorRhode, Scott

The 20MW reactor at Fort Greely was the state's first--and, for the time being, only-nuclear energy project. From 1962 to 1972, SM-1A provided steam heat and electricity for Fort Greely. Operating costs were too high, though, so the reactor was shut down.

"The control rods, all the radioactive waste, all the radioactive liquids were sent to the Lower 48, but some of the lower-dose materials were left up there for our future efforts," says Brenda Barber, program manager for the Environmental and Munitions Design Center at the US Army Corps of Engineers (USACE) Baltimore District.

Fifty years after SM-1A was mothballed, USACE is responsible for final cleanup. "These sites have to be fully decommissioned and dismantled within sixty years of initial shutdown. For Fort Greely, that's 2032," Barber explains. "Our clock is ticking."

Engineers encased the SM-1A containment vessel and reactor components in concrete, which makes the decommissioning unusual. "We're going to have to remove all that concrete so we can gain access to the reactor components and then remove them So we do have some added complications at Fort Greely," says Barber.

Last July, USACE awarded a $103 million contract for the decommissioning to Westinghouse Government Services of South Carolina. For comparison, the construction cost of SM-1A and its prototype, SM-1 at Fort Belvoir in Virginia, was approximately $20 million each, adjusting for sixty years of inflation. Who said it was easier to destroy than create?

To shrink the life-cycle cost of the next generation of nuclear power, a separate division of Westinghouse is working on a new system named eVinci. Whereas SM-1A is stationary and medium-sized (hence the designation), eVinci is mobile and smaller than small; it's considered "micro," a 5MW reactor that fits inside a 40-foot shipping container.

Westinghouse Vice President of New Plant Market Development Eddie Saab says eVinci is designed to be removed from a site and leave nothing behind. "We believe we will be able to accomplish that with eVinci by making it transportable," he says. "There's more confidence in the back end because of the transportability."

Instead of monumental edifices, microreactors look more like construction office trailers, and they could be just as temporary.

Next Generation

"Before, everybody was trying to make bigger and bigger reactors; they were trying to contain the cost by making large scale deployment," says Cristian Rabiti, vice president of business development for USNC. "What happened was, you know, they were not able to control the cost on the building because it was always the first of a kind. So there was an upwards cost escalation, and the benefit of the economy of scale kind of disappeared."

USNC is a Seattle-based startup that is developing its own microreactor, the Micro Modular Reactor (MMR). The core is buried underground, upright, next to another module that circulates helium coolant. The helium transfers heat to molten salt, which is pumped to a neighboring steam turbine to drive the generator. Molten salt also stores heat overnight to be released during daytime hours.

MMR and eVinci are both designed to be refueled by the manufacturer: reloaded after twenty years in the case of USNC and totally reclaimed and, if desired, replaced after at least eight years in the Westinghouse approach.

The form of the fuel, called TRISO, makes microreactors...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT