Nuclear power and sustainable development.

AuthorRogner, H.-Holger

A central goal of sustainable development is to maintain or increase the overall assets (natural, man-made, human and social) available to future generations while minimizing depletion of finite resources and without exceeding the carrying capacities of ecosystems. The essence of the Brundtland Report's definition of sustainable development is expanding possibilities and keeping options open, not foreclosing them for future generations. The selection of technologies to advance sustainable energy development in any given country is a sovereign choice, and each country will need a mix of technologies suited to its situation and needs. As there exists no absolute yardstick for sustainable energy development and there is no technology without risk, wastes or interaction with the environment, nuclear energy's compatibility with sustainable development objectives cannot be judged in isolation but only in comparison with available alternatives. This paper will provide such comparative assessments and specifically address concerns about nuclear power, such as the longevity of radioactive wastes, operating safety, weapons proliferation as well public and political acceptance. Based on the concept of weak sustainability' and by applying a set of criteria for sustainable development, this paper will argue that the further development of nuclear power broadens the natural resource base for meeting growing global energy needs, increases technological and human capital and, when safely handled, has little impact on human health and ecosystems along the full nuclear source-to-service energy chain. However, societies compare the benefits and risks of technologies from the menu of options available to them. As long as the real benefits exceed the risks of nuclear power; societies tend to accept the technology. The recent renaissance of interest in nuclear power is the result of changes in the risks and benefits of its key alternatives.

**********

Since the late 1970s, nuclear power has been a particularly controversial topic. After almost two decades of great enthusiasm for the benefits of the technology, the public began to grasp the existence of the other side of the nuclear coin: the associated risks, ranging from plant safety concerns after the 1979 accident at Three Mile Island (TMI) in the United States, to the lack of a solution regarding the disposal of high-level nuclear waste, to economics and nuclear weapons proliferation. The ensuing debates were typically centered on individual issues where no common platform or benchmark was reached.

The publication in the late 1980s of "Our Common Future," also known as the Brundtland Commission Report, provided a platform for this debate as well as a flexible definition of sustainable development, which combined limited carrying capacities of ecosystems, finiteness of resources and human development needs. The Brundtland Commission was set to address concerns about "the accelerating deterioration of the human environment and natural resources and the consequences of that deterioration for economic and social development." (1) The report spawned the United Nations Conference on Environment and Development (UNCED), held in 1992 in Rio de Janeiro. One outcome of UNCED was Agenda 21, a comprehensive action plan for sustainable development. Essentially, its chapters translate the Brundtland Commission's definition into more specific policy directions. Despite the fact that Agenda 21's forty chapters cover all aspects of sustainable development, almost all of which have a direct link to energy, it has no separate chapter dedicated to energy. (2)

The UN Commission on Sustainable Development (CSD) was established to oversee the implementation of Agenda 21. Energy was specifically addressed for the first time at the ninth session of the CSD (CSD-9) in 2001. CSD-9's decision on energy was a dedicated effort by the CSD to further translate the Brundtland Commission's definition of sustainable development into specific policy directions with respect to energy. (3) It was also the first time that nuclear energy was discussed at the international level with a direct reference to sustainable development. A heated debate ensued between countries that consider nuclear power an essential component of their sustainable development strategies and those that consider nuclear power fundamentally incompatible with sustainable development. (4) Ultimately, countries agreed to disagree on the role of nuclear power in sustainable development. CSD-9's final text observed that some countries view nuclear power as an important contributor to sustainable development and others do not, and summarized briefly the logic of each perspective. But countries also agreed that the "choice of nuclear energy rests with countries." (5)

CSD-9 also recognized the essential role of energy in implementing Agenda 21. Affordable, accessible and clean energy services are keys to eradicating poverty, improving human welfare and raising living standards. "But however essential it may be for development, energy is only a means to an end. The end is good health, high living standards, a sustainable economy and a clean environment. No form of energy--coal, solar, nuclear, wind or any other--is inherently good or bad, and each is only valuable in as far as it can deliver this end." (6)

The CSD-9 debate clearly highlighted that sustainable development means different things depending on a variety of factors, including: the actual stage of development of a country, its endowment with natural resources, geography, alternative energy options, energy demand prospects and economic capability. It is a continually evolving process that changes as countries reach different stages of development. Sustainability is often presented along the three dimensions of economic prosperity, social equity and environmental protection. Achieving sustainable development, therefore, involves resolving the inherent conflicts between these competing objectives. Technology is the critical link in this process, and the extent to which nuclear power can contribute to achieving sustainable development will be addressed in the following sections.

ENERGY SYSTEMS

Societies demand affordable and clean energy services that support transportation of people and goods, information transfer, lighting, space conditioning, as well as the production of investment and consumer goods. These services are oblivious of the multi-link chain involved in supplying them. The chain extends from energy sources provided by nature--such as oil, coal, uranium, wind and geothermal--through technologies and infrastructures required for harvesting and converting sources into fuels and distributing them to the end-use technologies that produce a particular energy service. The multitude of resource-to-service chains composes the energy system.

No absolute yardstick exists for measuring the development of sustainable energy systems. Moreover, there is no technology implementation that prevents risks to the environment. Even if a technology does not emit harmful substances at the point of use, adverse health and environmental impacts due to emissions and waste may be caused during its construction, equipment manufacturing or fuel production. Thus, nuclear energy's compatibility with sustainable development objectives must be assessed in light of available alternatives using a common set of criteria or benchmarks, which could vary from country to country and location to location.

THE ECONOMIC DIMENSION

There is a broad consensus that development needs, as defined by Brundtland, are inextricably linked to the availability and accessibility of affordable energy services. (7) Abundant and cheap energy has fueled economic development in today's industrialized countries and remains crucial for the industrialization of developing countries. Cheap energy supports both industrial competitiveness and affordability for consumers. However, distorted energy prices due to ignored external costs result in an inefficient and wasteful use of energy and suboptimal allocation of resources.

More generally, the economic dimension concerns the maintenance, growth and use of different categories of capital: man-made (e.g., infrastructures, machines or technology), natural (e.g., mineral resources, forests, clean air and water or the atmosphere) and social/human (e.g., institutions, knowledge, intact societies or tradition). All three types of capital contribute to economic development and are inherently substitutable, the extent of which has led to the distinction of strong and weak sustainability. (8) "Strong sustainability" assumes a limited level of substitutability between each type of capital--complements rather than substitutes--and requires that each type be maintained separately at some minimum level. A key example is that renewable resources must be harvested within the regenerative capacity of the natural capital stock that produces them and its waste must not exceed the ecosystem's carrying capacity. "Weak sustainability" refers to the maintenance of the total level of capital passed down through generations without regard to its particular form. This allows for the use of exhaustible energy sources as long as depletion is compensated by equivalent increases in man-made and social/human capital. It requires the efficient use of non-renewable resources that reflect full social costs and the timely development of inexhaustible energy systems.

Nuclear Power and the Economic Dimension

Nuclear power is a knowledge-based, high-tech, capital-intensive technology with low operating and fuel costs. Well-run nuclear power plants are among the lowest cost generators with considerable profit margins in most electricity markets. For example, Germany's recent decision to suspend its nuclear phase-out policy was, in large part, driven by the government's need to finance budget deficits. In exchange for...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT