How the Terminator Terminates.

AuthorCrouch, Martha L.
PositionGenetic engineering to kill second generation seeds

An explanation for the non-scientist of a remarkable patent for killing second generation seeds of crop plants

Genetically modified organisms (GMOS) nave become a commercial reality in agriculture, For example, it is estimated that in 1998 over 18 million acres in the United States will be planted in Roundup Ready soybeans, which were first introduced in 1996 (Horstmeier, 1998). These soybeans are engineered by Monsanto Corporation to contain a bacterial gene that confers tolerance to the herbicide glyphosate, or Roundup, also made by Monsanto. Only two years after the introduction of Roundup Readysoybeans, over 30% of the corn and soybeans planted in the United States, and close to 50% of the canola planted in Canada, are genetically engineered to be either herbicide or pesticide resistant.

Monsanto and the other companies that have invested heavily in biotechnology in the last two decades are starting to make some money after years of promises without products, and they are aggressively protecting their patented seeds. In a recent issue of the Farm Journal (Monsanto, 1997), Monsanto ran a full page advertisement asking farmers to respect the company's property rights:

It takes millions of dollars and years of research to develop the biotech crops that deliver superior value to growers. And future investment in biotech research depends on companies' ability to share in the added value created by these crops. Consider what happens if growers save and replant patented seed. First, there is less incentive for all companies to invest in future technology, such as the development of seeds with traits that produce higher-yielding, higher-value and drought-tolerant crops.... In short, these few growers who save and replant patented seed jeopardize the future availability of innovative biotechnology for all growers. And that's not fair to anyone.

In the future, companies and government breeders who genetically engineer crops may not have to ask for such compliance. If the procedure outlined in a recent patent comes to fruition and is widely used, plant variety protection will be biologically built into the plants themselves.

In March of 1998, a seed company later to be purchased by Monsanto, Delta and Pine Land Company, in collaboration with the United States Department of Agriculture, was awarded US Patent Number 5,723,765: Control of Plant Gene Expression. Although the patent is broad and covers many applications, one application favored by the patent's authors is a scheme to engineer crops to kill their own seeds in the second generation, thus making it impossible for farmers to save and replant seeds.

This "invention" has been dubbed the "Terminator Technology" by Rural Advancement Foundation International (RAFI), and that group of researchers have analyzed some of the technology's serious social, economic and environmental implications (RAFI 1998). However, many of the consequences of Terminator cannot be fully appreciated without an understanding of the science behind the invention. In this paper, I outline the steps involved in engineering Terminator Technology into a specific crop. After explaining the process, I then discuss which details might have the devil in them.

Overview

To help describe the Terminator procedure, I have confined the explanation to only one of the many possibilities covered by the patent. The example I have chosen is cottonseed, which previously has been genetically engineered with a unique trait, herbicide tolerance. In my discussion, I have assumed that to ensure that the descendants of the herbicide tolerant seeds are not used without compensation to the seed company, the company has genetically engineered the cotton with Terminator. Although this is a hypothetical case--Terminator cotton is not yet n the market, after all--all the components of the procedure have been shown to function, at least in the text of the patent for Terminator.

Cotton is not often sold as a hybrid seed, and is thus a likely candidate for Terminator protection. By way of contrast, corn is usually planted as a hybrid, and thus has some measure of variety protection already. This is because the first generation of a hybrid is genetically fairly uniform, and has been bred to have desired characteristics that are not present in either parent alone. When these hybrids make seeds, however, the second generation is quite variable because of the shuffling of genes that occurs during sexual reproduction. Industrial agriculture requires uniformity, because the plants must dovetail with mechanization. Therefore, industrial farmers who grow corn usually buy new seed every year.

There are several major crops, which usually are not grown from hybrid seeds. These include wheat, rice, soybeans, and cotton. Farmers often save the seeds from these crops, and may not go back to the seed company for several years--or longer, in some parts of the world--to purchase a new variety.

It would be a big boost to seed company profits if people who now grow non-hybrid crops would have to buy new seed every year. This may have been the major incentive for developing the Terminator Technology.

There likely were other reasons for developing Terminator. One reason may relate to the way in which Terminator's effect differs from hybridization.

When Terminator is used, the second generation is killed. With hybridization, the second generation is variable, but alive; and any genes present in the hybrid will be present in the second generation, although in unpredictable combinations. Therefore, a...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT