COVID's Lessons for Future Modeling of Pandemics.

AuthorAtkeson, Andrew
PositionResearch Summaries

During the first half of the 20th century, Americans enjoyed tremendous gains in health and life expectancy as large investments in sanitation, public health, and medicine resulted in the conquest of infectious diseases. Crude annual mortality rates from infectious disease in the United States fell by an order of magnitude: from nearly 800 per 100,000 in 1900 to fewer than 50 per 100,000 by 1960, with the steady downward trend interrupted dramatically by the Great Influenza Pandemic of 1918-19. (1)

But, as the emergence of HIV/AIDS and now COVID-19 as worldwide pandemics has made clear, the threat to health, life, and economic prosperity from infectious disease is far from vanquished. (2)

If there is one lesson economists can take away from the public health and economic disaster of COVID-19, it is that we should strive to have a better understanding of the interaction of behavior and the spread of infectious disease so that we might be better prepared with public health and economic policy tools to contain the damage from the next emergent pandemic. After one year of data on COVID, it is clear that endogenous public and private behavior aimed at slowing disease transmission has played an important role in shaping the evolution of this pandemic and in constraining the potential impact of the policy tools available to improve public health and economic outcomes.

I started working on COVID-19 in early 2020 as the virus emerged in China and led to stringent lockdowns of millions in that country. In my first paper on the topic, I spelled out the implications of a standard epidemiological model for the peak prevalence and long-run impact of the disease here in the United States, using parameters estimated from the early data on COVID-19 from China. (3), (4) Models like this one have been widely used to guide the public health response to COVID-19 around the world.

Three quantitative implications of this standard epidemiological model stand out. First, the model gave dire forecasts for the peak of the first wave of the disease absent drastic efforts to slow transmission. Second, it forecast that if efforts to slow transmission were applied early but were only temporary, this dramatic peak of the first wave would simply be delayed. Cases and deaths would explode again once efforts to slow transmission were relaxed. Third, the model offered dramatic predictions for the long-run impact of the disease: more than two-thirds of the population would experience infections or need to be vaccinated before the pandemic would come to an end. (5)

It is now clear that the first two predictions of this standard model were off by at least an order of magnitude. The model predicted that the portion of the population with active infections at the first peak would range from 10 to 20 percent, or between 33 million and 66 million simultaneous active infections. Given current parameter estimates suggested by the Centers for Disease Control and Prevention for use in modeling COVID-19, this peak of infections would have resulted in a peak of roughly 30,000 to 60,000 deaths in the United States per day. (6) Certainly if anything like this outcome had occurred, the impact of the pandemic on economies worldwide in the spring of 2020 would have been much larger than what we saw. Nothing of the sort happened anywhere in the world.

Looking at the evolution of the pandemic across a large number of countries worldwide and in US states, Karen Kopecky, Tao Zha, and I document that the second main implication of the standard epidemiological model was also off by a wide margin. (7) While many locations in the world have suffered severe second or third waves of COVID deaths after relaxing costly public measures to control disease transmission, the scale of these waves has been much smaller than predicted from standard models. The growth rates of daily infections and deaths from COVID never returned to the extraordinarily high levels seen in many locations around the world in March 2020.

What about the third prediction, regarding the long-run impact of the disease? Empirically, the question of what percentage of the population has to gain immunity to COVID-19 either through prior infection or vaccination before the pandemic will come to an end is not yet fully resolved. But the available data from locations such as Manaus, Brazil, which has experienced high rates of infection, and Israel, which has high vaccination rates, indicate that the predictions of a standard epidemiological model for the long-run impact of COVID are likely correct.

How does consideration of the impact of behavior on the progression of a pandemic help us understand this relationship between model predictions and observed outcomes? Within economics, Tomas Philipson pioneered the study of the interaction of behavior and the spread of disease in his work on the HIV/AIDS pandemic. In a 1999 chapter summarizing work on that pandemic, Philipson argued for the incorporation into epidemiological models of prevalence-elastic private demand for prevention of the spread of infectious disease. (8) He argued that such models offer two fundamental economic insights into the interaction of behavior and public health. The first of these is that costly private...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT