Artificial Intelligence

AuthorMichel Mitri, Rhoda Wilburn
Pages18-21

Page 18

Artificial intelligence (AI) refers to computer software that exhibits intelligent behavior. The term "intelligence" is difficult to define, and has been the subject of heated debate by philosophers, educators, and psychologists for ages. Nevertheless, it is possible to enumerate many important characteristics of intelligent behavior. Intelligence includes the capacity to learn, maintain a large storehouse of knowledge, utilize commonsense reasoning, apply analytical abilities, discern relationships between facts, communicate ideas to others and understand communications from others, and perceive and make sense of the world around us. Thus, artificial intelligence systems are computer programs that exhibit one or more of these behaviors.

AI systems can be divided into two broad categories: knowledge representation systems and machine learning systems. Knowledge representation systems, also known as expert systems, provide a structure for capturing and encoding the knowledge of a human expert in a particular domain. For example, the knowledge of medical doctors might be captured in a computerized model that can be used to help diagnose patient illnesses.

MACHINE LEARNING SYSTEMS

The second category of AI, machine learning systems, creates new knowledge by finding previously unknown patterns in data. In contrast to knowledge representation approaches, which model the problem-solving structure of human experts, machine learning systems derive solutions by "learning" patterns in data, with little or no intervention by an expert. There are three main machine learning techniques: neural networks, induction algorithms, and genetic algorithms.

NEURAL NETWORKS

Neural networks simulate the human nervous system. The concepts that guide neural network research and practice stem from studies of biological systems. These systems model the interaction between nerve cells. Components of a neural network include neurons (sometimes called "processing elements"), input lines to the neurons (called dendrites), and output lines from the neurons (called axons).

Neural networks are composed of richly connected sets of neurons forming layers. The neural network architecture consists of an input layer, which inputs data to the network; an output layer, which produces the resulting guess of the network; and a series of one or more hidden layers, which assist in propagating. This is illustrated in Figure 1.

During processing, each neuron performs a weighted sum of inputs from the neurons connecting to it; this is called activation. The neuron chooses to fire if the sum of inputs exceeds some previously set threshold value; this is called transfer.

Inputs with high weights tend to give greater activation to a neuron than...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT